Modeling Dynamic Fracture Using Large-scale Atomistic Simulations

نویسندگان

  • Markus J. Buehler
  • Huajian Gao
چکیده

We review a series of large-scale molecular dynamics studies of dynamic fracture in brittle materials, aiming to clarify questions such as the limiting speed of cracks, crack tip instabilities and crack dynamics at interfaces. This chapter includes a brief introduction of atomistic modeling techniques and a short review of important continuum mechanics concepts of fracture. We find that hyperelasticity, the elasticity of large strains, can play a governing role in dynamic fracture. In particular, hyperelastic deformation near a crack tip provides explanations for a number of phenomena including the “mirror-misthackle” instability widely observed in experiments as well as supersonic crack propagation in elastically stiffening materials. We also find that crack propagation along interfaces between dissimilar materials can be dramatically different from that in homogeneous materials, exhibiting various discontinuous transition mechanisms (mother-daughter and mother-daughter-granddaughter) to different admissible velocity regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations: Suggestions toward Improved Ductility.

Ceramics are strong, but their low fracture toughness prevents extended engineering applications. In particular, boron carbide (B(4)C), the third hardest material in nature, has not been incorporated into many commercial applications because it exhibits anomalous failure when subjected to hypervelocity impact. To determine the atomistic origin of this brittle failure, we performed large-scale (...

متن کامل

Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension

Atomistic simulations are performed to study the nonlinear mechanical behavior of graphene nanoribbons under quasistatic uniaxial tension, emphasizing the effects of edge structures (armchair and zigzag, without and with hydrogen passivation) on elastic modulus and fracture strength. The numerical results are analyzed within a theoretical model of thermodynamics, which enables determination of ...

متن کامل

ultiscale molecular modeling in nanostructured material design and process

Atomistic-based simulations such as molecular mechanics, molecular dynamics, and Monte Carlo-based methods have come into wide use for material design. Using these atomistic simulation tools, we can analyze molecular structure on the scale of 0.1–10 nm. However, difficulty arises concerning limitations of the time and length scale involved in the simulation. Although a possible molecular struct...

متن کامل

Atomistic aspects of fracture

Any fracture process ultimately involves the rupture of atomic bonds. Processes at the atomic scale therefore critically influence the toughness and overall fracture behavior of materials. Atomistic simulationmethods including large-scalemolecular dynamics simulations with classical potentials, density functional theory calculations and advanced concurrent multiscale methods have led to new ins...

متن کامل

Atomistic modeling of the fracture of polycrystalline diamond

A series of molecular-dynamics simulations using a many-body interatomic potential has been performed to investigate the behavior under load of several ^001& and ^011& symmetrical tilt grain boundaries ~GB’s! in diamond. Cohesive energies, the work for fracture, maximum stresses and strains, and toughness as a function of GB type are evaluated. Results indicate that special short-period GB’s po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005